1

ZŁAMANIA OSTEOPOROTYCZNE I UPADKI U KOBIET W OKRESIE MENOPAUZY W BADANIACH PROSPEKTYWNYCH

I Środkowo Europejski Kongres Osteoporozy i Osteoartrozy oraz XIII Zjazd Polskiego Towarzystwa Osteoartrologii i Polskiej Fundacji Osteoporozy, Kraków 6-8.10.2005

Streszczenia:
Ortopedia Traumatologia Rehabilitacja 2005, vol 7 (Suppl. 1), s77-78.

L23
ZŁAMANIA OSTEOPOROTYCZNE I UPADKI U KOBIET W OKRESIE MENOPAUZY W BADANIACH PROSPEKTYWNYCH

Osieleniec J.1, Czerwiński E. 1, 2, Czerwińska M.2
1. Zakład Chorób Kości i Stawów Collegium Medicum Uniwersytetu Jagiellońskiego
2. Krakowskie Centrum Medyczne, ul. Kopernika 32, Kraków, www.kcm.pl

Słowa kluczowe: złamania pozakręgosłupowe, upadki, ryzyko złamania, częstość złamań, badanie prospektywne

Wstęp
Złamania są podstawowym problemem w osteoporozie. Życiowe ryzyko wystąpienia jakiegokolwiek złamania u 50-letniej kobiety wynosi aż 39.7%. Szacuje się, że w USA występuje rocznie 1.5 mln złamań, w tym 700 tys. złamań kręgosłupa, 300 tys. złamań bliższego końca kości udowej (bkk udowej), 250 tys. złamań dalszej części kości promieniowej i 300 tys. innych złamań. Złamanie jest skutkiem działania siły, która przekracza wytrzymałość mechaniczną kości. 90-100% złamań poza-kręgowych i do 50% złamań kręgosłupa wynika z upadków. Celem doniesienia jest ocena częstości złamań i ich zależność od skłonności do upadków u kobiet w okresie menopauzy.
Materiał
Spośród 76.000 osób przebadanych w Krakowskim Centrum Medycznym wybraliśmy 500 kobiet w wieku powyżej 50 rż, które były badane w naszym ośrodku co najmniej dwa razy, w okresie więcej niż 1 roku. Kobiety z tej grupy były badane po raz pierwszy w latach 1995-2003, a następnie w latach 2004-2005. Wiek badanych wahał się od 50 do 80 lat (średnio 65.8 lat; SD=15.1), a okres obserwacji od 1-10.1 lat (średnio 7.2 lat; SD 4.91). U wszystkich przeprowadzono wywiad według specjalnego kwestionariusza, który obejmował pytania o upadki oraz występowanie złamania: kręgosłupa, złamanie kości promieniowej, kości ramiennej, inne złamania kończyny górnej, bkk udowej, podudzia, kostek, stopy i innych złamań kończyny dolnej. Informacje o upadkach kategoryzowano jako: nigdy, 1-2 w roku, 3 razy i więcej. U chorych wykonano również badanie densytometryczne w jednej lub więcej lokalizacji: przedramię (DTX200), kręgosłup lub bkk udowej (Lunar DPX IQ, Hologic Delphi W). Obliczono częstość poszczególnych złamań w czasie pierwszego i ostatniego badania oraz przeanalizowano ich zależność od upadków.
Wyniki
W czasie pierwszego badania przebyte złamanie podawało 195 (39.2%) kobiet, u których wystąpiło 268 złamań, w tym: kości promieniowej 129 (25.9%), złamań w obrębie stopy 38 (7.6%), kości ramiennej 23 (4.6%), kręgosłupa 21 (4.2%), podudzia 19 (3.8%), kostek 12 (2.4%), obojczyka 4 (2.8%), żeber 14 (0.8%) i złamań bkk udowej 8 (1.6%).
Podczas drugiego badania, które przeprowadzono po średnio 7.2 latach złamanie wystąpiło u 233 (46.9%) kobiet, a ich ogólna liczba wzrosła do 404. W poszczególnych lokalizacjach złamania wystąpiły z następującą częstością: kość promieniowa 165 (33.2%), złamanie w obrębie stopy 58 (11.6%), kość ramienna 41 (8.2%), podudzie 35 (7.0%), kręgosłup 30 (6.0%), żebra 28 (5.63%), kostki 23 (4.6%), obojczyk 8 (1.6%) i złamanie bkk udowej 16 (3.2%).
Informacją o upadkach dysponowaliśmy u 432 kobiet. Większość z nich – 269 (62.3%) nie doznała ani jednego upadku w ciągu roku. Upadek przebyło 163 (37.7%) kobiet, w tym 1-2 razy w ciągu roku 140 (32.4%), 3 razy i więcej 23 (5.3%). Spośród kobiet, które upadły 102 (63%) doznały złamania, natomiast w grupie, które nigdy nie upadały złamania doznało 121 (45%) pań.
Częstość złamań była znamiennie większa (p=0.002) u kobiet, które miały skłonność do upadków w porównaniu do kobiet, które w ogóle nie upadały. Częstość upadków była głównym czynnikiem zwiększającym ryzyko złamania.
Wnioski
W badanej grupie u 39.2% kobiet stwierdzono złamanie w badaniu pierwszorazowym a po średnio 7.2 latach u 46.9% kobiet (wzrost o 7.7%). W tym okresie czasu wystąpiło 136 nowych złamań (wzrost o 50.8%). Złamania były znamiennie częstsze u kobiet, które miały skłonność do upadków w porównaniu do kobiet nie upadających (63% vs 45%, p.=0.002). Zwiększenie częstości upadków zasadniczo zwiększa ryzyko wystąpienia złamań osteoporotycznych.

 

L23
A PROSPECTIVE STUDY ON OSTEOPOROTIC FRACTURES AND FALLS IN POSTMENOPAUSAL WOMEN

Osieleniec J.1, Czerwiński E. 1, 2, Czerwińska M.1
1 Krakow Medical Centre, ul. Kopernika 32, 31-501 Krakow, Poland, www.kcm.pl
2 Department of Bone and Joint Diseases Jagiellonian University, Krakow, Poland

Keywords: non-spinal fractures, falls, fracture risk, frequency of fractures, prospective study

Introduction
Fractures are the most important problem in osteoporosis. A lifetime risk of any fracture in 50-year-old woman is 39.7%. It is estimated that 1.5 mln of fractures occur during 1 year in USA, including: 700 000 spinal fractures, 300 000 proximal femur fractures, 250 000 distal radius fractures and 300 000 other fractures. A fracture is the result of force action overcoming mechanical strength of a bone. 90-100 % of non-spinal fractures and up to 50% of spinal fractures are caused by falls. The aim of this study is to evaluate frequency of fractures and their relation with suscebility to falls in postmenopausal women.
Material
Amongst 76.000 patients of Krakow Medical Centre we selected 500 women aged 50 years and above who underwent at least 2 examinations in our centre within at least 1 year follow-up. This group of women visited our centre first time in 1995-2003, and later in 2004-2005. The age of examined patients ranged 50 do 80 yrs (average 65.8 yrs; SD=15.1). The follow-up period ranged 1 – 10.1 yrs (average 7.2 yrs; SD 4.91). Detailed interview according to prepared special questionnaire was collected in every case. The questionnaire covered data about falls and following fractures occurrence: spine, distal radius, other upper limb fractures, proximal femur, lower leg, ankle, foot and other lower limb fractures.
Data about falls was categorised as: “never”, “1-2 times a year”, “3 or more times a year”.
Bone mineral density measurements were performed in one or more regions: forearm (DTX200), spine or proximal femur (Lunar DPX IQ, Hologic Delphi W).
We calculated frequency of specific fractures which occurred in the first and the follow-up visit and we analyzed their relation to falls.
Results
Among all women seen at the first visit 195 (39.2%) reported fractures . There were total 268 different fractures, including distal radius 129 (25.9%), foot fractures 38 (7.6%), humerus fractures 23 (4.6%), spinal fractures 21 (4,2%), lower leg fractures 19 (3.8%), ankle fractures 12 (2.4%), clavicle fractures 4 (2.8%), ribs fractures 14 (0.8%) and proximal femur fractures 8 (1.6%).
At the follow-up visits after average 7.2 years there were 233 (46.9%) women who sustained any fracture. The total number of fractures increased to 404. Distribution of fractures in different localisations was: distal radius 165 (33.2%), foot fractures 58 (11.6%), humerus fractures 41 (8.2%), lower leg fractures 35 (7.0%), spinal fractures 30 (6.0%), ribs fractures 28 (5.63%), ankle fractures 23 (4.6%), clavicle fractures 8 (1.6%) and proximal femur fractures 16 (3.2%).
Data about falls was available in 432 women. Majority of them – 269 (62.3%) never fell down. Total 163 (37.7%) women experienced any fall within a year. Among these 1-2 falls were reported by 140 (32.4%) women, and 3 times and more falls were reported by 23 (5.3%) women.
In the group of women who fell 102 (63%) women sustained fractures, whilst in the group of non-fallers there were 121 (45%) women with fractures.
Frequency of fractures was significantly higher (p=0.002) in women who were prone to falls as compared to non-fallers. Falls were found to be the main factor increasing fracture risk.
Conclusions
39.2% of the investigated women reported fracture at the first time visit and 46,9% at the follow-up visit after 7.2 years of observation (increase 7.7%). 136 new fractures occurred in the follow-up time (increase 50.8%). Fractures were significantly more frequent in women prone to falls as compared to non-fallers (63% vs 45%, p.=0.002). Falls were found to be the major risk factor of osteoporotic fractures.




L23 A TRANSLATION APPROACH TO CLINICAL GUIDELINE DEVELOPMENT WITH FRAX®

III Środkowo Europejski Kongres Osteoporozy i Osteoartrozy oraz XV Zjazd Polskiego Towarzystwa Osteoartrologii i Polskiej Fundacji Osteoporozy, Kraków 24-26.09.2009

Streszczenia:
Ortopedia Traumatologia Rehabilitacja 2009, vol 11 (Suppl. 2), s:75-76.
 
 
L23
A TRANSLATION APPROACH TO CLINICAL GUIDELINE DEVELOPMENT WITH FRAX®
 
Johansson H., Odén A., Kanis J.A., McCloskey E.
WHO Collaborating Centre for Metabolic Bone Diseases, University of Sheffield, UK.
 
FRAX® is a computer based algorithm that provides models for estimating the probability for fracture in men and women, and is freely available on the internet (http://www.shef.ac.uk/FRAX). The method uses risk factors that are easily obtained in primary or secondary health care to estimate the probability of sustaining a fracture within 10 years. The estimate can be used as it is or together with a measurement of bone mineral density (BMD) at the femoral neck to increase the precision of the estimate. Given its ease of use, the FRAX® tool is being increasingly used by clinicians and this has created the need for new clinical guidelines to incorporate fracture probability into clinical management. The aim of this abstract is to show the effect of using a translational approach to develop new clinical guidelines.
In Sweden, guidelines are provided by Medical Products Agency – Sweden. Under this guidance, individuals are considered as candidates for treatment on the basis of BMD and clinical risk factors for osteoporosis. More specifically, they are considered for treatment when they have a BMD T-score of < -2.0 SD and a previous fracture or a BMD T-score of <-2.5 SD and at least one strong risk factor (high age, glucocorticoids, family history of fracture) or at least two weak risk factors (low body mass index (BMI), smoking, early menopause).
These guidelines have been ‘translated’ into probabilities for a major osteoporotic fracture using the Swedish FRAX®-model. When using these criteria for intervention thresholds, fracture probabilities increased with age. Thus, the threshold for treatment at the age of 50 years in women was a major fracture probability of 13%, and rose to 34% at the age of 80 years. A number of combinations of risk factors were found to lie above these thresholds and enfranchise treatment in the absence of fracture or osteoporosis. For example, a woman aged 80 years with a body mass index of 24 kg/m2, BMD T-score of –1.8 SD and a family history of hip fracture had a 10-year probability of a major osteoporotic fracture of 35% and would thus be a candidate for treatment. Similarly, a woman aged 80 years with a BMI of 24 kg/m2, BMD T-score of –1.5 SD, a previous fracture, current smoker and a corticosteroid user would also qualify with a probability of a major osteoporotic fracture of 34%.
The translational approach is one method of developing new guidelines for the management of osteoporotic fractures. When the new guidelines are developed in this way every individual with a fracture probability over the limit would be eligible for treatment, even if they had a combination of clinical risk factors that with the old guidelines would not have qualified them for treatment.
 
 
L23
IMPLEMENTACJA POSTĘPÓW FRAX® DO WYTYCZNYCH KLINICZNYCH
 
Johansson H., Odén A., Kanis J.A., McCloskey E. 
WHO Collaborating Centre for Metabolic Bone Diseases, University of Sheffield, UK.
 
FRAX® jest komputerowym algorytmem dostarczającym modele do oszacowania prawdopodobieństwa wystąpienia złamania u kobiet i mężczyzn, dostępnym przez Internet (http://www.shef.ac.uk/FRAX). Metoda używa czynników ryzyka, łatwych do uzyskania w podstawowej i specjalistycznej opiece medycznej, w celu oszacowania prawdopodobieństwa złamania w ciągu kolejnych 10 lat. Ocena ta może być używana sama, lub wraz z pomiarem gęstości mineralnej kości (BMD) szyjki kości udowej dla zwiększenia jego precyzji. Biorąc pod uwagę łatwość stosowania, narzędzie FRAX® jest coraz częściej używane przez lekarzy, co wymaga stworzenia nowych wytycznych klinicznych, aby zawrzeć prawdopodobieństwo złamania w postępowaniu klinicznym. Celem tego streszczenia jest ukazanie wyników używania zmienionego podejścia w tworzeniu nowych klinicznych wytycznych.
W Szwecji wytyczne ustala Medical Products Agency – Sweden. Według tych wytycznych poszczególne osoby są rozpatrywane jako kandydaci do leczenia na podstawie BMD oraz klinicznych czynników ryzyka występowania osteoporozy. Uściślając, do leczenia kwalifikują się osoby, u których BMD T-score wynosi < -2.0 SD i wcześniej wystąpiło złamanie, lub BMD T-score wynosi <-2.5 SD i występuje przynajmniej jeden silny czynnik ryzyka (podeszły wiek, zażywanie sterydów, złamania w rodzinie) lub przynajmniej dwa słabe czynniki ryzyka (niski wskaźnik masy ciała (BMI), palenie papierosów, wczesna menopauza).
Te wytyczne zostały ‘przełożone’ na prawdopodobieństwo wystąpienia zasadniczego złamania osteoporotycznego z użyciem szwedzkiego modelu FRAX®. Używając tych kryteriów dla progów interwencyjnych, prawdopodobieństwo złamania zwiększało się z wiekiem. Zatem próg dla leczenia kobiet w wielu 50 lat stanowiło prawdopodobieństwo wystąpienia złamania zasadniczego wynoszące 13%, i wzrastało do 34% w wielu 80 lat. Stwierdzono, że wiele kombinacji czynników ryzyka było ponad tymi progami i uzasadniało leczenie w przypadku braku występowania złamań lub osteoporozy. Na przykład u kobiety w wieku 80 lat o wskaźniku masy ciała 24 kg/m2, BMD T-score –1.8 SD i przypadkach złamań biodra w rodzinie, 10-letnie ryzyko wystąpienia zasadniczego złamania osteoporotycznego jest równe 35% i kwalifikuje tym samym do leczenia. Podobnie, kobieta w wielu 80 lat o BMI równym 24 kg/m2, BMD T-score –1.5 SD, ze złamaniem, paląca papierosy i zażywająca sterydy również kwalifikuje się do leczenia z prawdopodobieństwem wystąpienia zasadniczego złamania osteoporotycznego równym 34%.
Opisana metoda jest jednym ze sposobów tworzenia nowych wytycznych w postępowaniu w przypadku złamania osteoporotycznego. Według tworzonych w ten sposób nowych wytycznych każda osoba, u której ryzyko złamania przekracza określoną normę, kwalifikowałaby się do leczenia nawet, jeśli występująca u nich kombinacja czynników ryzyka nie kwalifikowałaby ich do leczenia według starych wytycznych.
 




Bone: a living tissue

II Środkowo Europejski Kongres Osteoporozy i Osteoartrozy oraz XIV Zjazd Polskiego Towarzystwa Osteoartrologii i Polskiej Fundacji Osteoporozy, Kraków 11-13.10.2007

Streszczenia:
Ortopedia Traumatologia Rehabilitacja 2007, vol 9 (Suppl. 2), s118-119.


 

L23
BONE: A LIVING TISSUE

Seeman E.

Austin Health, University of Melbourne, Melbourne, Australia

Bone is a masterpiece of intelligent design and biomechanical engineering that achieving lightness for the antelope’s spring and strength for the elephant’s walk. Bone is stiff, able to resist bending without cracking for loading, yet flexible, able to absorb energy by deforming without cracking. Bone achieves these contradictory properties through its material composition and structural design. Tensile strength is achieved by weaving type 1 collagen into a triple helix of rope like cross-linked collagen molecules. Stiffness is achieved by encrusted these molecules with platelets of calcium hydroxyapatite. Highly mineralised collagen of the auditory ossicles faithfully transmit sound like tuning forks while less densely mineralised bone like antlers allow the flexibility needed for energy absorption during in head butting. If under-mineralised for the loads usually encountered, bone bends ‘too much’ and cracks, if over-mineralised for the loading usually encountered, bone bends ‘too little’ and cracks. This composite material is fashioned economically using nothing – void space. Long bones are mainly levers that achieve structural rigidity and lightness using the marrow cavity that shifts the bony cortex distant from the neutral axis. Vertebral bodies are mainly springs, they absorb energy; stiffness is sacrificed for flexibility using a ‘honey comb’ cancellous structure.
Structure determines the loads tolerated, but the opposite also applies – loads determine structure. Bone adapts its material composition and structure to prevailing loads by modifying its size, shape and the distribution of its bone mass using the cellular machinery of bone modelling and remodelling. Periosteal and endosteal modelling and remodelling varies at each point around a perimeter of a cross section, and along its whole length, from cross section to cross section. This specificity fashions the varying sizes and shapes, cortical and trabecular distributions in each cross section needed to accommodate compressive, bending and shear stresses. Osteocytes within lacunae communicate with each other and flattened lining osteoblasts to serve as detectors of deformation need for modelling and remodelling to accommodate loading or signal, sometimes by their own apoptotic death, the recruitment of osteoclasts for damage removal and so strength maintenance.
The capacity of this cellular machinery to adapt structure to function is Herculean during growth but not in adulthood. Age-related changes in this cellular machinery – the reduction in periosteal bone formation, a reduction in bone formation within each basic multicellular unit (BMU), increased bone resorption in the BMU, accelerated bone remodelling, abnormalities in osteocyte numbers and signalling contribute to the progressive decay of the pristine material composition and structural design of bone that produces bone fragility. Understanding the mechanisms responsible for the development of abnormalities in the cellular machinery of bone modelling and remodelling provide important insights into ways of preventing and perhaps reversing the material and structural decay responsible for bone fragility.

L23
KOŚĆ: ŻYJĄCA TKANKA

Seeman E.

Austin Health, University of Melbourne, Melbourne, Australia.

Kość jest arcydziełem inteligentnego projektu i inżynierii biomechanicznej, dzięki czemu daje lekkość pędzącej antylopie i wytrzymałość kroczącemu słoniowi. Kość jest sztywna, zdolna oprzeć się siłom zginającym, a równocześnie elastyczna, gotowa by zaabsorbować energię zniekształcającą unikając przy tym złamania. Kość osiąga te przeciwstawne sprzeczne właściwości poprzez zastosowanie specyficznego budulca oraz budowę wewnętrzną. Siła napinająca jest osiągana poprzez utkanie włókien kolagenu typu I w sznur z potrójnej helisy jak połączenie skrzyżowane molekuł kolagenu. Sztywność kości daje inkrustacja tych molekuł płytkami kryształków hydroksyapatytu. Wysoko zmineralizowany kolagen kosteczek słuchowych wiernie transmituje dźwięk kamertonu, a mniej zmineralizowana tkanka rogów nadaje odpowiednią giętkość potrzebną do absorpcji energii wyzwalanej podczas pojedynków głową. Jeśli kość jest niedostatecznie zmineralizowana to pod wpływem naprężeń ugina się nadmiernie i łamie. W sytuacji nadmiernego uwapnienia kość nie wygina się odpowiednio i również łamie. Ten złożony materiał budulcowy jest utkany ekonomicznie z wykorzystaniem pustej przestrzeni. Kości długie są dźwigarami, które osiągają swoją sztywność i lekkość z pomocą jamy szpikowej, która podnosi warstwę korową z osi neutralnej. Kości kręgów są przede wszystkim sprężyste, ponieważ ich zadaniem jest absorpcja energii. Ich elastyczność jest uzyskana jednak kosztem sztywności dzięki konstrukcji przypominającej formę “plastra miodu”.
Struktura kości determinuje jej tolerancje na obciążenia, ale równocześnie następuję proces odwrotny – obciążenia wpływają na strukturę. Kość adaptuje swój skład i budowę do panujących obciążeń modyfikując swój rozmiar, kształt oraz dystrybucję masy kostnej poprzez mechanizmy komórkowej przebudowy i resorpcji. Zewnątrz i wewnątrzokostnowa przebudowa tkanki kostnej jest różna w każdym punkcie: przy obrzeżach przekroju poprzecznego jak i wzdłuż całej długości kości, od przekroju poprzecznego do przekroju poprzecznego. To specyficzne połączenie różnych mód rozmiarów, kształtów, kości beleczkowej i korowej w każdej płaszczyźnie poprzecznej jest niezbędne by przystosować tkankę kostną na działanie sil ściskających, zginających i ścinających. Osteocyty w obrębie zatok jamistych komunikują się ze sobą i ze spłaszczoną wyściółką osteoblastów aby służyć jako czujniki zniekształceń, niezbędne do procesów remodelingu kości pod wpływem działających obciążeń lub sygnałów. Czasami osteocyty poprzez swoją własną śmierć (apoptozę) stymulują osteoklasty do usunięcia zniszczonej tkanki i w ten sposób utrzymania wytrzymałości kości.
Wydajność tej komórkowej maszynerii w przystosowywaniu struktury kości do pełnionej funkcji w okresie wzrostu można porównać do pracy Herculesa. Jednakże po osiągnięciu dojrzałości jej efektywność spada. Związane z wiekiem zmiany w tej komórkowej maszynerii – spadek kościotworzenia okołokostnowego, w każdej podstawowej jednostce wielokomórkowej (BMU – basic multicellular unit), wzrost resorbcji w BMU, przyspieszenie remodelingu kości, nieprawidłowości w liczbie osteoctów i dystrybucji sygnałów – prowadzą do wzrostu łamliwości kości. Zrozumienie mechanizmów odpowiedzialnych za rozwój tych nieprawidłowości w maszynerii komórkowej modelującej kość dostarczy ważnych danych umożliwiających profilaktykę, a może odwrócenie rozpadu struktury i materiału kości odpowiedzialnego za kruchość kości.