1

WŁAŚCIWOŚCI I ZASTOSOWANIE POROWATYCH IMPLANTÓW KORUNDOWYCH

I Środkowo Europejski Kongres Osteoporozy i Osteoartrozy oraz XIII Zjazd Polskiego Towarzystwa Osteoartrologii i Polskiej Fundacji Osteoporozy, Kraków 6-8.10.2005

Streszczenia:
Ortopedia Traumatologia Rehabilitacja 2005, vol 7 (Suppl. 1), s196-197.

P65
WŁAŚCIWOŚCI I ZASTOSOWANIE POROWATYCH IMPLANTÓW KORUNDOWYCH

Jaegermann Z., Karaś J., Michałowski S.
Instytut Szkła i Ceramiki, Zakład Badawczo-Produkcyjny Bioceramiki, ul. Postępu 9, 02-676 Warszawa, e-mail: bioceramika@neostrada.pl

Słowa kluczowe: wypełnianie ubytków kości, porowaty materiał korundowy

Wprowadzenie
Postęp we współczesnej medycynie pociąga za sobą potrzebę udoskonalania stosowanych już w praktyce biomateriałów, a także badania możliwości wprowadzenia do praktyki lekarskiej nowych materiałów, między innymi tworzyw bioceramicznych. Najlepiej poznana, najbardziej kompleksowo zbadana grupa materiałów – bioceramiczne materiały korundowe – weszła już na stałe do operacyjnej praktyki. Stosuje się tu zarówno materiały w formie prawie bezporowatego spieku, jak też materiały porowate – o różnym stopniu porowatości – przeznaczone do różnych zastosowań. Wynika to z jednej strony z bardzo dobrych własności mechanicznych tego typu tworzyw, a z drugiej z potwierdzonej licznymi badaniami, dobrej ich biozgodności.
Ważnym problemem w nowoczesnej chirurgii jest możliwość dobrego zespolenia wszczepu z kością. Według wielu badaczy odpowiedni kształt implantu, uwzględniający rozkład naprężeń na granicy kontaktu implant-tkanka kostna, zapewniający sztywne osadzenie wszczepu w kości przez cały okres jego przebywania w organizmie pozwala na stworzenie takich warunków wgojenia wszczepów jakie towarzyszą normalnemu procesowi gojenia złamanej kości. Zastosowanie materiałów porowatych umożliwia mechaniczne połączenie ich z żywą tkanką poprzez jej wrośnięcie w pory materiału. Odpowiedni rozmiar porów i połączeń między porami decydują o właściwej mineralizacji tkanki, dającej dobre i trwałe połączenie implantu z kością. Uznaje się powszechnie, że optymalny rozmiar porów wynosi od 0,2mm do 0,8mm, a połączeń pomiędzy porami – powyżej 0,1mm.
Cel pracy
Celem prezentowanej pracy było zbadanie wpływu wielkości porowatości i rozmiaru porów na właściwości fizyczne i wytrzymałość porowatego tworzywa korundowego.
Materiały
Do badań użyto tworzywa korundowego o przybliżonym składzie: Al2O3 – 97,0%, MgO – 2,5%, CaO – 0,5%. Sposób otrzymywania tworzywa porowatego polegał na formowaniu kształtek z masy lejnej zawierającej drobnoziarnisty tlenek glinu z dodatkami ułatwiającymi chemiczne spienienie materiału, a następnie jego wypaleniu w temperaturze 1730oC.
Metody
Gęstość pozorną implantów porowatych oznaczano metodą geometryczną, porowatość całkowitą obliczono na podstawie gęstości pozornej i gęstości rzeczywistej, a badania wytrzymałościowe przeprowadzono na maszynie LR10K (Lloyd Instruments). Obserwacje struktur porowatych prowadzono przy pomocy mikroskopu stereoskopowego Stemi 2000-C (Carl Zeiss). Do oznaczeń ilościowych mikrostruktury porowatej tworzyw zastosowano metody stereologiczne.
Wyniki
W ramach prac doświadczalnych przygotowano trzy serie próbek porowatego tworzywa korundowego. Poszczególne serie różniły się nieznacznie pomiędzy sobą sposobem prowadzenia procesu spieniania chemicznego, co zaowocowało różną ich mikrostrukturą porowatą. Wielkość porowatości wahała się od 53,3% do 72,9%, a średni rozmiar porów od 0,46mm do 1,23mm. W zależności od wielkości porowatości uzyskano implanty o wytrzymałości mechanicznej na ściskanie od 12,5MPa do 98MPa.
Wnioski
1. W oparciu o wyniki przeprowadzonych badań stwierdzono, że niewielkie zmiany sposobu spieniania gęstwy ceramicznej wpływają w znaczący sposób na mikrostrukturę i właściwości porowatych implantów korundowych.
2. Sposób spieniania odpowiadający serii badawczej nr 2 pozwala na uzyskanie materiału o odpowiednich właściwościach mikrostruktury porowatej tj. wartości porowatości całkowitej i średniego rozmiaru porów.
3. Wytrzymałość na ściskanie wszystkich otrzymanych materiałów porowatych osiągnęła wartość wystarczającą do wypełniania nimi ubytków kości gąbczastej.


P65
PROPERTIES AND APPLICATIONS OF POROUS ALUMINA IMPLANTS

Jaegermann Z., Karaś J., Michałowski S.
Institute of Glass and Ceramics, Department of Bioceramics, 9, Postępu Street, 02-676 Warsaw, Poland e-mail: bioceramika@neostrada.pl

Keywords: filling bone defects, bone graft, porous alumina material

Introduction
Alumina biomaterials, being one of the best known and most widely used in medicine group of synthetic materials have been already a part of orthopaedic practice. They have been implemented in the form of non-porous ceramics as well as in the porous form. Excellent mechanical properties and good biocompatibility are their main advantages.
Good graft/bone connection is one of the major problem in the present day implantology. According to specialists, the proper shape of implant, adapted to the stress pattern on the bone-implant boundary that guarantees the rigid mount of implant in bone, assures implant overgrowing conditions similar to the normal healing of bone fracture. Application of porous material makes possible its mechanical connection with living tissue which overgrows into the pores of biomaterial. Correct pores size and connective ducts between the pores decide on the overgrowing and mineralization of tissue developing good and stable bone-implant connection. It is well known that the optimal pore size ranges between 0,2mm and 0,8mm. Correct connective ducts size is above 0,1mm.
The aim of this investigation was to evaluate the influence of pore size and total porosity on physical and mechanical properties of porous alumina implants.
Materials
Alumina material used for the research has the following composition: Al2O3 – 97.0 wt%, MgO – 2.5 wt%, CaO – 0.5 wt%. The method of chemical foaming of alumina material consists in casting samples from slurry containing fine-grained aluminium oxide, additives and polymer based liquid. Test samples were sintered in the temperature of 1730oC.
Methods
The apparent density of the material was determined by the geometrical method, total porosity was calculated on the basis of apparent density and specific density, compressive strength was tested on mechanical tester LR10K (Lloyd Instruments) and the porous microstructure was observed with the use of stereomicroscope Stemi 2000-C (Carl Zeiss). The quantitative evaluation of microstructure was performed by stereologic analysis.
Results
Three test batches of porous alumina material were prepared. They differed slightly from each other in the method of foaming, what affected their porosity microstructure. The total porosity of these materials ranged from about 53,3% to 72,9% and the mean pore size from about 0,46mm to 1,23mm. Their compression strength, ranging between 12,5MPa and 98 MPa, differed according to the total porosity value.
Conclusion
1. According to the results of the investigation it was found that even a slight differences in foaming method of the tested materials significantly affects their microstructure and physical properties of porous implants.
2. The foaming parameters of the batch number 2 allowed to obtain the adequate microstructure of the porous material.
3. The value of compressive strength of all obtained porous alumina implants is sufficient for its application as a filling material of cancellous bone.




RESORBOWALNE BIOMATERIAŁY GIPSOWE DO WYPEŁNIANIA UBYTKÓW KOŚCI

I Środkowo Europejski Kongres Osteoporozy i Osteoartrozy oraz XIII Zjazd Polskiego Towarzystwa Osteoartrologii i Polskiej Fundacji Osteoporozy, Kraków 6-8.10.2005

Streszczenia:
Ortopedia Traumatologia Rehabilitacja 2005, vol 7 (Suppl. 1), s200-201.


P68
RESORBOWALNE BIOMATERIAŁY GIPSOWE DO WYPEŁNIANIA UBYTKÓW KOŚCI

Michałowski S.1, Jaegermann Z.1, Karaś J.1, Pielka S.2, Paluch D.2
1 Instytut Szkła i Ceramiki, Zakład Badawczo-Produkcyjny Bioceramiki, ul. Postępu 9, 02-676 Warszawa, e-mail: bioceramika@neostrada.pl
2 Zakład Chirurgii Eksperymentalnej i Badania Biomateriałów AM we Wrocławiu

Słowa kluczowe: wypełnianie ubytków kości, wszczepy gipsowe

Wprowadzenie
W chirurgii kości istnieje duże zapotrzebowanie na biozgodne materiały implantacyjne do wypełniania ubytków tkanki kostnej. Szczególnie intensywne badania prowadzi się nad implantacyjnymi materiałami resorbowalnymi. Jednym z takich biozgodnych i całkowicie resorbowalnych materiałów jest siarczan wapnia, popularny gips. Po wszczepieniu do kości gips następnie ulega całkowitej resorpcji w czasie od 4 do 20 tygodni po implantacji. Jest również dodatkowym źródłem jonów wapniowych, które są ważnym składnikiem w tworzeniu nowej tkanki kostnej. Zmodyfikowane wszczepy gipsowe, oprócz swojej funkcji wypełniającej mogłyby w przyszłości pełnić także bardzo ważną rolę nośnika środków farmakologicznych, substancji pobudzających odbudowę tkanek itp.
Cel pracy
Celem prowadzonych badań było opracowanie składu surowcowego i metod otrzymywania biomateriałów w postaci: porowatych implantów gipsowych, gipsu do implantacji w stanie plastycznym oraz kompozytowego materiału gipsowego, a także przeprowadzenie ich oceny biologicznej.
Materiały
Do badań użyto czystych surowców gipsowych do zastosowań medycznych, a także modyfikatorów czasu wiązania i resorbowalnego fosforanu wapnia.
Metody
Czas wiązania tworzyw gipsowych określono zgodnie z normą ISO 6873, gęstość pozorną oznaczano metodą geometryczną, współczynnik rozmiękania obliczono ze stosunku wytrzymałości tworzywa w stanie całkowitego nasycenia wodą do wytrzymałości w stanie suchym, a badania wytrzymałości mechanicznej na ściskanie przeprowadzono na maszynie LR10K. Obserwacje mikrostruktury tworzyw gipsowych prowadzono w skaningowym mikroskopie elektronowym.
Badania cytotoksyczności „in vitro” przeprowadzono metodą bezpośredniego kontaktu zgodnie z normą PN-EN ISO 10993-5. Obecnie trwają badania implantacyjne wybranych materiałów.
Wyniki
W ramach przeprowadzonych prac doświadczalnych otrzymano materiały gipsowe, które różniły się między sobą gęstością pozorną (1,0÷1,7g/cm3), porowatością całkowitą (25%÷65%) oraz wytrzymałością na ściskanie (10÷45MPa).
Otrzymany gips implantacyjny, w zależności od stosowanego surowca gipsowego oraz środka modyfikującego, charakteryzował się czasami wiązania od 3 do 20min. Gęstość otrzymanych materiałów gipsowych była znaczna – od 1,65 do 1,85g/cm3, co istotnie wpłynęło na podniesienie ich wytrzymałości mechanicznej na ściskanie (40÷75MPa).
Kompozytowe tworzywa gipsowe, w zależności od ilości dodatku fosforanu wapnia, charakteryzowały się gęstością pozorną w granicach 1,2÷1,6g/cm3 i wytrzymałością mechaniczną na ściskanie od 10 do 30MPa.
Badania cytotoksyczności wybranych materiałów gipsowych nie wykazały istotnych odchyleń ani w zakresie morfologii ani żywotności fibroblastów mysich w stosunku do hodowli macierzystej po 24, 48 i 72h.
Wnioski
1. Na właściwości materiałów gipsowych ma wpływ wiele czynników, m.in.: rodzaj zastosowanego surowca gipsowego, ilość wody oraz rodzaj i ilość dodatku modyfikującego.
2. Poprzez dobór odpowiedniego składu można kontrolować takie właściwości materiałów gipsowych, jak: porowatość, gęstość pozorną, wytrzymałość na ściskanie, czas wiązania oraz degradowalność.
3. Do badań biologicznych wybrano biomateriały gipsowe cechujące się optymalnymi parametrami fizykochemicznymi, wytrzymałościowymi i aplikacyjnymi. Żadne z badanych tworzyw gipsowych, w czasie do 72h, nie wykazuje działania cytotoksycznego na fibroblasty mysie.

Prace dofinansowane przez KBN w ramach projektu celowego Nr G T08 0122 C/05848


P68
RESORBABLE CALCIUM SULFATE AS A BONE GRAFT MATERIAL

Michałowski S.1, Jaegermann Z.1, Karaś J.1, Pielka S.2, Paluch D.2
1 Institute of Glass and Ceramics, Department of Bioceramics, 9, Postępu Street, 02-676 Warsaw , e-mail: bioceramika@neostrada.pl
2 Department of Experimental Surgery and Biomaterials Research of Wrocław Medical University

Keywords: filling bone defects, calcium sulfate bone grafts,

Introduction
There is a high demand for biocompatible implant materials for filling bone defects in the field of bone surgery. At the present moment intensive research on resorbable bone grafts is observed. Calcium sulfate (gypsum, Plaster of Paris) is one of the resorbable and biocompatible materials. It undergoes total resorption between 4 to 20 weeks after implantation into bone tissue. Gypsum grafts are also a source of calcium ions which are important factors in bone reconstruction. In future, modified calcium sulfate grafts, could serve not only as bone filler but as a carriers of medical agents in the local therapies of bone as well.
The aim of this investigation was to elaborate composition and method of obtaining calcium sulfate biomaterials in the form of porous gypsum implants, gypsum dough for implantation and gypsum composite implants, as well as their biological evaluation.
Materials and methods
For this work medical quality of calcium sulfate, setting time modifying agents and resorbable calcium phosphate were used.
The setting time was determined according to ISO 6873 standard, apparent density – by the geometrical method. Coefficient of softening was calculated on the basis of compressive strength of dry and wet state of gypsum material. Compressive strength was tested on mechanical tester LR10K (Lloyd Instruments). The microstructure of materials was observed with scanning electron microscope.
Cytotoxicity assay was performed using direct contact “in vitro” method according to PN-EN ISO 10993-5 standard. Implantation tests are currently under way.
Results
During the investigation several gypsum materials were prepared. They differed from each other in apparent density (1,0÷1,7g/cm3), in total porosity (53,3% to 72,9%), and in compression strength, ranging the latter between 12,5MPa and 98 MPa.
The setting time of the gypsum dough for implantation ranged from 3 to 20 minutes, depending on the quality of calcium sulphate and modifying agent used. Higher values of material density (1,65-1,85g/cm3) improve its compressive strength (40-75MPa).
Depending on the quantity of calcium phosphate additive, gypsum composite materials reached apparent density from 1,2 to 1,6g/cm3 and compression strength from 10MPa to 30 MPa.
Tests of cytotoxicity of selected materials compared to the stock culture didn’t show any essential differences in morphology and vitality of fibroblasts of mice after 24, 48 and 72 hours.
Conclusion
1. The quality of calcium sulfate, quantity of water as well as type and quantity of modifying agent used influence the parameters of gypsum biomaterials.
2. By changes in composition of calcium sulfate biomaterial it is possible to control its porosity, density, strength, setting time and absorbability.
3. Gypsum biomaterials characterized by optimal physical, mechanical and functional properties were chosen for biological examination, and none of the materials tested up to 72 hours showed any cytotoxicity on fibroblasts of mice.

This work was supported by the State Committee of Scientific Research (grant No. G T08 0122 C/05848)